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Introduction

Alkylidenephosphoranes [R1
3P=CR

2
2], alternatively named

phosphonium alkylides and usually called phosphorus
ylides,[1] are one of the basic phosphorus compounds in or-
ganic chemistry since Wittig et al. started to develop the
synthesis of olefins from carbonyl compounds.[1–5] Whereas a
number of these phosphorus ylides have been synthesized
and their properties have been studied, phosphorus ylides
bearing a P�H bond (A) are rare, because they are unstable
and easily isomerize to the corresponding phosphines (B)
(Scheme 1).[5] The instability of A relative to B shows a
sharp contrast to the case of phosphine oxides bearing a P�

H bond [>P(=O)H], which predominate over phosphinous
acids [>P�OH] because of the stability of the P=O bond.
One approach for stabilizing structure A is to employ elec-
tron-withdrawing substituents such as ester groups, which
causes delocalization of negative charge, together with ki-
netic stabilization by bulky substituents.[5] Indeed, Kolo-
diazhnyi reported the tautomeric equilibrium between R2P�
CH(CO2Me)2 and R2PH=C(CO2Me)2, where R is a bulky
alkyl group.[5,6] An alternative approach to synthesize phos-
phorus ylides with a P�H bond was demonstrated by Ber-
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trand and co-workers who utilized bulky diisopropylamino
groups and the P=C=P skeleton for the preparation of phos-
phorus ylides bearing P�H bonds ((R2N)2PH=C=PX(NR2)2;
X=H or F, R= iPr).[7] Recently, Niecke and co-workers
have succeeded in isolating cyclic phosphorus ylide C where
trimethylsilyl groups and pyridyl groups stabilize the
>P(H)=C< system.[8]

One of the stable phosphorus ylides is (cyclopenta-2,4-di-
enylidene)triphenylphosphorane (the Ramirez ylide) 1 be-
cause the cyclopentadienyl ring displays aromaticity upon
reduction.[9–11] Likewise, we have previously synthesized

1,3,6-triphosphafulvene 2 from a formal trimerization of the
phosphanylidene carbenoid [Mes*P=CBrLi] (Mes*=2,4,6-
tri-tert-butylphenyl).[12,13] Compound 2 contains the 1,3-di-
phosphacyclopentadiene skeleton which is a congener of cy-
clopentadiene. Taking the similarity between the P=C bonds
and C=C bonds into consideration,[14] the C3P2 five-mem-
bered ring is expected to show a similar nature to cyclopen-
tadienes. Furthermore, the P=C moiety shows good p-elec-
tron-accepting ability due to the low-lying LUMO, which ef-
fectively stabilizes the adjacent negative charge.[14–17] There-
fore, we expected 2 to be a promising starting material for
the synthesis of phosphorus ylides bearing a P�H bond, and
herein we report our findings. The structures of the resulting
phosphorus ylides bearing a P�H bond were determined by
X-ray crystallography. Furthermore, we carried out theoreti-
cal studies on the structure and properties of cyclopenta-2,4-
dienylidenephosphorane and the related compounds.

Results and Discussion

Preparation of phosphorus ylides with a P�H bond : As we
demonstrated previously, regiospecific nucleophilic attack
occurred at the 6-position of 2 to give the corresponding
anion 3, which affords the corresponding phosphinodiphos-
pholes 4 upon quenching with iodomethane.[18] On the other
hand, when acetic acid was employed as an electrophile for
3, no phosphinodiphosphole was obtained, but rather the
novel compounds 5 (Scheme 2). Spectroscopic data of 5 sug-
gested a pentavalent phosphorane structure with a P�H
group in the molecules. In the
31P NMR spectrum of 5, the
peak at dP=�23.2 (5a) or
�4.5 ppm (5b) is accompanied
by a considerably large J(P,H)
coupling constant. These J(P,H)
constants are close to the corre-
sponding data of the reported
phosphorus ylides with P�H

bonds.[6–8] In the 13C NMR spectrum of 5a, one of the sp2-
carbon atoms in the C3P2 ring that connects with the phos-
phorane moiety was observed at relatively higher field (dC=

119.8 ppm) than the other two carbon atoms (dC=182.6 and
171.4 ppm). In the 1H NMR spectrum of 5, the P-H proton
was observed at dH=7.64 (5a) and 7.24 ppm (5b) accompa-
nied by a large J(P,H) coupling constant. Compounds 5 nei-
ther decompose in air and even on silica gel nor isomerize
to phosphinodiphospholes similar to 4, suggesting that the
2,4-diphosphacyclopenta-2,4-dienyl group plays an impor-
tant role in stabilizing the P�H ylide structures.

We have established an alternative procedure to prepare
a stable ylide bearing a P�H bond from 2. Compound 2 was
allowed to react with hydrogen tetrafluoroborate in di-
chloromethane to generate a phosphonium salt 6 which was
observed by 31P NMR spectroscopy (Scheme 3). The solu-
tion of 6 was concentrated and phosphorus ylide 7 was gen-
erated upon addition of ethyl acetate. Finally 7 was purified
by column chromatography on silica gel. The presence of P�
H and P�F bonds in 7 was identified by 31P and 1H NMR
spectroscopy, and three sp2-carbon atoms in the C3P2 five-
membered ring were observed by 13C NMR spectroscopy.
Similar to 5, 7 showed no isomerization to phosphinodi-
phosphole derivatives. The synthetic procedures for 5 and 7
are regarded as an oxidative addition of R�H (R=Me, nBu,
F) at the exo sp2-phosphorus atom of 2, which resembles the
reported procedure for preparation of a phosphorus ylide
from phosphaalkene (MesP=CPh2; Mes=2,4,6-Me3C6H2).

[19]

As for the regioselective protonation of 3, we have carried
out theoretical calculations. Attempts to clarify the forma-
tion mechanism of 5 and 7 are in progress.

Molecular structure: Single crystals of 7 were obtained and
analyzed by X-ray crystallography. Figure 1 displays an

Scheme 2.

Scheme 3.
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ORTEP drawing of the structure of 7 together with selected
metric parameters. The five-membered C3P2 ring and the P1
atom are coplanar (V(P1-C1-P3-C3) 174.9(4)8, V(P1-C1-C2-
P2) 175.4(4)8, V(P2-C2-C1-P3) 3.9(6)8, V(P2-C3-P3-C1)
2.3(4)8, V(P3-C3-P2-C2) 0.5(4)8). The P1�C1 distance is
close to that of the exo P=C bond of 2w (1.710(6) M)[12] and
the corresponding bond in the Ramirez ylide 1
(1.718(2) M).[11] On the other hand, the P2�C2 and P3�C3

bonds are longer than the corresponding bonds of 2w
(1.689(7), 1.703(7) M), which is compensated for by contrac-
tion of the P2�C3 and P3�C1 bonds (P�C bonds in the C3P2

ring of 2w: 1.815(6), 1.801(7) M).[12] The C1�C2 bond is
slightly longer than the corresponding bond of 2w
(1.447(8) M),[12] probably due to repulsion between the Mes*
group at the C2 atom and the exo phosphorane moiety.
These metric parameters of 7 indicate the properties of
phosphorus ylides that show both the characteristics of the
“ylene” structure 7 and the zwitterionic structure 7A.

Theoretical calculations : To understand the structure and
properties of 7 in detail, we performed theoretical calcula-
tions for 2,4-diphosphacyclopenta-2,4-dienylidenephosphor-
ane (8) and the related compounds 9 and 10. Calculations

were performed with the Gaussian03 quantum chemical pro-
gram package.[20] Geometry optimizations and harmonic vi-
brational frequency calculations were carried out with the
B3LYP functional and the cc-pVTZ basis set. Single point
CCSD(T)/aug-cc-pVDZ calculations were performed on the
geometries obtained with the B3LYP functional. Figure 2
displays optimized structures of 8–10 together with bond
order data and atomic charges (the Wiberg indices). The
structure of 8 is close to the observed structure of the C3P2

ring of 7 (Figure 1). The exo PC bond length of 8 is close to
that of 9, suggesting a P=C double bond. In agreement with
this, recent theoretical investigations pointed out that the
PC bond in methylenephosphorane [H3PCH2] displays the
characteristics of a l5-P=C double bond.[21] On the other
hand, the structure of the five-membered ring moiety of 8 is
close to that of 10. Accordingly, the observed structure of
the C3P2 five-membered ring of 7 is similar to that of 10.
Furthermore, the atomic charge on the ylide carbon atom of
8 (�0.87) is more negative than those of the corresponding
carbon atoms of 9 (�0.74) and 10 (�0.74). These properties
of 7 and 8 suggest phosphorus ylides, which are often de-
scribed by two canonical structures: ylenes [R3P=CR

0
2] and

ylides [R3P
+�C�R0

2].
Compounds 5 and 7 showed no isomerization through H-

migration to the corresponding phosphinodiphospholes.
However, 8 showed inferior stability compared with phos-
phinodiphospholes 11–13 according to calculations
(Table 1). To study the regioselective protonation of 3, we
calculated the molecular electrostatic potential (MEP, vi-
sualized with the gOpenMol program[22]) maps of the anion
10 and its lithium complex (Figure 3). According to these re-
sults, in the case of the pure anion 10 (Figure 3a), the proto-
nation is favored mainly on the ring, while in the lithium
complex (Figure 3b) the exo-phosphorus atom is the main
protonation side, which clearly shows the role of the kinetic
effects in the formation of 5.[8] Thus, the lithium atom plays
an important role in the reactivity of 3. On the other hand,
in the reaction of 3 with iodomethane,[18] iodine might affect
the regioselectivity, leading to 4.

Figure 1. Structure of 7 (ORTEP drawing; 50% probability ellipsoids).
Hydrogen atoms except for H1 are omitted for clarity. The two p-tert-
butyl groups in the Mes* groups at C2 and C3 are disordered, and the
atoms with predominant occupancy factors (0.60 and 0.60, respectively)
are displayed. Selected bond lengths [M] and angles [8]: P1�F 1.560(4),
P1�C1 1.708(7), P1�CMes* 1.784(7), P2�C2 1.736(7), P2�C3 1.769(7), P3�
C1 1.778(6), P3�C3 1.724(7), C1�C2 1.454(7), C2�CMes* 1.505(7), C3�
CMes* 1.526(8), P1�H1 1.347; C1-P1-F 112.8(3), F-P1-CMes* 113.7(3), C1-
P1-CMes* 114.3(3), C2-P2-C3 97.3(3), C1-P3-C3 96.0(3), P1-C1-P3
123.4(3), P1-C1-P2 119.9(4), P3-C1-C2 116.1(5), P2-C2-P1 114.6(4), P2-
C2-CMes* 128.6(4), P1-C2-CMes* 128.6(4), P2-C3-P3 115.9(4).
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Although l5-phosphorus ylides are normally less stable
than the corresponding l3-phosphines, phosphorus ylides can
be isolated due to the large activation energy for the isomer-
ization.[23] In the case of phosphorus ylides bearing a P�H
bond, the activation energy is small and thus they should be
easily isomerized.[24] The stability of 5 and 7 might be attrib-
uted to the p-accepting effect of the P=C moiety[16,17,25]

which prevents H-migration.[8] Additionally, the NICS value
of 8 (�10.7 a.u.) is similar to that of 10 (�10.9 a.u.), which
suggests that aromaticity[26] contributes to stabilize the ylide
structure of 5 and 7.[27] Conversely, 9 showed lower aroma-
ticity (NICS=++0.5) compared with 8 (Table 1).

Conclusion

We have demonstrated that
1,3,6-triphosphafulvene 2 is a
promising material for the
preparation of phosphorus
ylides bearing a P�H bond, and
have synthesized 5 and 7. We
succeeded in determining the
molecular structure of 7 which
displays characteristics of phos-
phorus ylides, namely the P=C
double bond structure and the
polar zwitterionic structure.
Theoretical calculations for 8
supported the ylide structures
for the experimentally synthe-
sized 5 and 7. The p-electron-
accepting effect of the 1,3-di-
phosphacyclopentadiene moiety
seems to be quite effective in
stabilizing the structures of 5
and 7. The findings we have de-
scribed herein will open new re-
search areas in the chemistry of
phosphorus ylides.

Experimental Section

5a : Compound 2 was prepared according to our previous report.[11,17]

Methyllithium (0.064 mmol, 1.0m solution in diethyl ether) was added to
a solution of 2 (50 mg, 0.058 mmol) in THF (1 mL) at �78 8C, and acetic
acid (0.35 mmol) was immediately added. The reaction mixture was al-
lowed to warm up to room temperature and the solvent was removed in
vacuo. Purification of the crude products by chromatography on silica gel
(hexane/EtOAc 10:1) afforded 5a (21 mg; 41% yield). Yellow prisms
(hexane), m.p. 185–187 8C; 31P NMR (162 MHz, CDCl3): d=233.7 (d, J-
(P,P)=28.3 Hz), 229.3 (ddd, J(P,P)=97.2 Hz, J(P,P)=28.3 Hz, J(P,H)=
5.8 Hz), �23.2 ppm (ddq, J(P,H)=467.6 Hz, J(P,P)=97.2 Hz, J(P,H)=
12.8 Hz); 1H NMR (400 MHz, CDCl3): d=7.64 (ddq, J(P,H)=467.6 Hz,
J(P,H)=5.8 Hz, J(H,H)=5.6 Hz, 1H; PH) 7.53–7.38 (m, 6H; arom), 2.26
(dd, J(P,H)=12.8 Hz, J(H,H)=5.6 Hz, 3H; Me), 1.66 (s, 9H; tBu), 1.49
(s, 9H; tBu), 1.41 (s, 9H; tBu), 1.38 (s, 9H; tBu), 1.36 (s, 9H; tBu), 1.34
(s, 9H; tBu), 1.32 (s, 9H; tBu), 1.21 (s, 9H; tBu), 0.91 ppm (s, 9H; tBu);
13C{1H} NMR (101 MHz, CDCl3): d=182.6 (m; C2), 171.4 (d, J(P,C)=
46.7 Hz; C4), 159.1 (d, J(P,C)=7.3 Hz; o-Mes*), 158.4 (d, J(P,C)=8.8 Hz;
o-Mes*), 154.5 (d, J(P,C)=3.5 Hz; p-Mes*), 150.7 (d, J(P,C)=6.0 Hz; o-
Mes*), 149.3 (m; o-Mes*), 148.6 (s; p-Mes*), 146.4 (s; p-Mes*), 139.5 (pt,
(J(P,C)+J(P,C))/2=22.0 Hz; ipso-Mes*), 135.5 (dd, J(P,C)=24.3 Hz, J-
(P,C)=9.9 Hz; ipso-Mes*), 127.6 (d, J(P,C)=12.3 Hz; m-Mes*), 125.3 (d,
J(P,C)=12.2 Hz; m-Mes*), 123.9 (d, J(P,C)=7.6 Hz; m-Mes*), 122.5 (d,
J(P,C)=8.3 Hz; m-Mes*), 119.8 (pt, (J(P,C)+J(P,C))/2=58.6 Hz; C5),
117.1 (d, J(P,C)=74.8 Hz; ipso-Mes*), 39.5 (s; o-CMe3), 39.2 (s; o-CMe3),
39.1 (s; o-CMe3), 38.9 (s; o-CMe3), 35.5–34.3 (br.s; o-CMe3, p-CMe3),
31.7 (s; p-CMe3), 31.6 (s; p-CMe3), 31.1 (s; p-CMe3), 20.6 ppm (dd, J-
(P,C)=55.7 Hz, J(P,C)=6.2 Hz; Me); UV (hexanes): lmax(loge)=356
(3.72) nm; elemental analysis calcd (%) for C58H91P3·H2O: C 77.46, H
10.42; found: C 77.69, H 10.59.

Figure 2. Bond lengths [M] and Wiberg indices (in a.u. indicated in square brackets) and natural atomic charg-
es (in a.u.) of 8–13.

Table 1. Total and relative energies, and NICS indices for 8–13.[a]

E Erel NICS
[a.u.] [kJmol�1] [a.u.]

B3LYP CCSD(T) B3LYP CCSD(T) B3LYP

8 �1141.45067 �1139.55030 52.93 62.70 �10.7
9 �1140.25143 – – – 0.5
10 �1140.94915 – – – �10.9
11 �1141.47083 �1139.57418 0.00 0.00 �4.5
12 �1141.47045 �1139.57359 0.98 1.54 �5.1
13 �1141.46985 �1139.58113 2.58 �18.26 –

[a] Level of calculations: CCSD(T)/cc-pVTZ//B3LYP/cc-pVTZ.

Chem. Eur. J. 2005, 11, 5960 – 5965 G 2005 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim www.chemeurj.org 5963

FULL PAPERPhosphorus Ylides

www.chemeurj.org


5b : Compound 2 (50 mg, 0.058 mmol) was allowed to react with butyl-
lithium (0.064 mmol, 1.6m solution in hexane) and acetic acid
(0.35 mmol) to afford 5b (23 mg, 44% yield) after workup similar to that
used in the synthesis of 5a. Yellow prisms (hexane), m.p. 203–205 8C;
31P NMR (162 MHz, CDCl3): d=240.0 (ddm, J(P,P)=113.2 Hz, J(P,P)=
27.3 Hz), 235.6 (d, J(P,P)=27.3 Hz), �4.5 ppm (ddm, J(P,H)=451.2 Hz,
J(P,P)=113.2 Hz); 1H NMR (400 MHz, CDCl3): d=7.24 (dm, J(P,H)=
451.2 Hz, 1H; PH), 7.58–7.50 (m, 6H; arom), 1.58 (s, 9H; tBu), 1.54 (s,
9H; tBu), 1.50 (s, 9H; tBu), 1.48 (s, 9H; tBu), 1.47 (s, 9H; tBu), 1.38 (s,
9H; tBu), 1.37 (s, 9H; tBu), 1.35 (s, 9H; tBu), 1.31 (s, 9H; tBu), 0.54 ppm
(t, J(H,H)=7.0 Hz, 3H; Me) (the methylene protons of the butyl group
were not assigned due to overlap with peaks of the tert-butyl groups);
UV (hexanes): lmax(loge)=352 (3.68) nm; elemental analysis calcd (%)
for C61H97P3·H2O: C 77.83, H 10.60; found: C 77.88, H 10.67.

7: Hydrogen tetrafluoroborate–diethyl ether complex (ca. 0.07 mmol)
was added to a solution of 2 (20 mg, 0.023 mmol) in dichloromethane
(1 mL) at room temperature. The reaction mixture was monitored by
31P NMR spectroscopy to observe phosphonium salt 6 (dP=313.5 (m),
42.5 (ddd, J(P,P)=65.6 Hz, J(P,F)=1116.0 Hz, J(P,H)=601.2 Hz), 35.4
(dd, J(P,P)=65.6 Hz, J(P,H)=250.3 Hz)). The reaction mixture was con-
centrated in vacuo and the residue was dissolved in ethyl acetate (1 mL).
The solution was concentrated and the residual materials were purified
by column chromatography on silica gel (hexane/EtOAc 1:1) to afford 7
(7 mg; 32% yield). Yellow prisms (hexane), m.p. 213–215 8C; 31P NMR
(162 MHz, CDCl3): d=249.4 (dpt, J(P,P)=34.5 Hz, (J(P,P)+J(P,F))/2=
9.6 Hz), 247.0 (ddd, J(P,P)=101.6 Hz, J(P,P)=34.5 Hz, J(P,H)=9.2 Hz),
45.2 ppm (dddd, J(P,F)=1077.3 Hz, J(P,H)=573.6 Hz, J(P,P)=101.6 Hz,
J(P,P)=9.6 Hz); 1H NMR (600 MHz, CDCl3): d=7.79 (ddd, J(P,H)=
573.6 Hz, J(F,H)=74.4 Hz, J(P,H)=9.2 Hz, 1H; PH), 7.57 (s, 1H; arom),
7.55 (s, 1H; arom), 7.50 (s, 2H; arom), 7.47 (s, 2H; arom), 1.46 (s, 9H;
tBu), 1.43 (s, 18H; tBu), 1.40 (s, 9H; tBu), 1.37 (s, 9H; tBu), 1.33 (s, 9H;
tBu), 1.28 (s, 18H; tBu), 1.06 ppm (s, 9H; tBu); 13C{1H} NMR (151 MHz,

CDCl3): d=184.4 (m; C2), 171.9 (d, J(P,C)=46.5 Hz; C4), 157.5 (s; p-
Mes*), 150.5 (d, J(P,C)=4.5 Hz; o-Mes*), 148.9 (m; o-Mes*), 148.4 (m;
o-Mes*), 147.9 (s; p-Mes*), 147.8 (d, J(P,C)=4 Hz; o-Mes*), 146.0 (s; p-
Mes*), 138.2 (pt, (J(P,C)+J(P,C))/2=20.2 Hz; ipso-Mes*), 135.9 (dd, J-
(P,C)=20.5 Hz, J(P,C)=10.5 Hz; ipso-Mes*), 122.4 (s; m-Mes*), 122.0 (s;
m-Mes*), 122.0 (s; m-Mes*), 121.6 (s; m-Mes*), 118.6 (m; C5), 112.2 (dd,
J(P,C)=114.0 Hz, J(F,C)=24.0 Hz; ipso-Mes*), 38.8 (s; o-CMe3), 38.6 (s;
o-CMe3), 38.4 (s; o-CMe3), 38.3 (s; o-CMe3), 35.4 (s; o-CMe3), 35.2 (s; p-
CMe3), 34.9 (s; p-CMe3), 34.8 (s; p-CMe3), 33.7 (s; o-CMe3), 33.0 (s; o-
CMe3), 31.5 (s; p-CMe3), 31.5 (s; p-CMe3), 30.8 ppm (s; p-CMe3);
19F NMR (559 MHz, CDCl3): d=�93.7 ppm (ddd, J(P,F)=1077.3 Hz, J-
(F,H)=74.4 Hz, J(P,F)=9.6 Hz); UV (hexanes): lmax(e)=381 (3.79), 320
(3.96) nm; elemental analysis calcd (%) for C57H88FP3: C 77.34, H 10.02;
found: C 76.85, H 10.20.

X-ray crystallography for 7: A Rigaku RAXIS-IV imaging plate detector
with graphite-monochromated MoKa radiation (l=0.71070 M) was used.
The structure was solved by direct methods (SIR92),[28] expanded by
using Fourier techniques (DIRDIF94),[29] and then refined by full-matrix
least squares. Structure solution, refinement, and graphical representation
were carried out using the teXsan package.[30] C57H88FP3, Mr=885.24,
crystal dimensions 0.20V0.15V0.10 mm3, triclinic, P1̄ (no. 2), a=
11.3053(6), b=23.251(2), c=10.5962(9) M, a=96.852(5), b=95.130(4),
g=91.659(2)8, V=2752.1(3) M3, Z=2, T=133 K, 2qmax=55.08, 1calcd=

1.068 gcm�3, m(MoKa)=0.145 mm�1, 22465 observed reflections, 11547
unique reflections (Rint=0.068), R1=0.089 (I > 3s(I)), RW=0.198 (all
data), S=1.41 (544 parameters). CCDC-267116 contains the supplemen-
tary crystallographic data for this paper. These data can be obtained free
of charge via www.ccdc.cam.ac.uk/data request/cif.
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